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Plan for today

1 Motivation: quantum computing
• What is quantum computing all about?
• Entanglement and nonlocal games

2 Graph isomorphism games

Take-away: quantum groups arise in quantum computing via
nonlocal games.
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Quantum computing and information

Goal: Exploit quantum mechanical effects to process information.

• better security guarantees

• faster algorithms

• higher communication rates, etc.

Early examples

• Unconditionally secure communication channel
(Bennett-Brassard’84, Ekert’91)

• Polynomial-time integer factorization (Shor’94)
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What is quantum entanglement?

• Property of composite systems.

• Effects experienced by one of the
parts affect the state of the other.

• Can be leveraged by distant agents to correlate their
behaviors beyond classical limits.

ψ
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Quantum entanglement leads to

• improvement for communication
• replacing quantum communication with classical

(teleportation)1

• doubling the classical capacity of quantum channels2

• increasing zero-error capacity of classical channels3

• secure protocols which can be run on untrusted devices4

• private randomness generation5

• certification of quantum devices6

• insights to black hole dynamics7

1Bennett, Brassard, Crépeau et al. Phys. Rev. Lett. 70(13), 1993.
2Bennett, Wiesner, Phys. Rev. Lett. 69, 1992.
3Leung, Mančinska, Matthews, Ozols, Roy, Comm. Math. Phys. 311(1), 2012.
4Mayers, Yao, FOCS’98, 503–509.
5Pironio, Aćın, Massar et al. Nature 464(7291), 2010.
6Magniez, Mayers, Mosca, Ollivier, ICALP’06, 72–83.
7Hayden, Preskill, J. High Energ. Phys., 2007(09):120, 2007.
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Entanglement allows us to outperform classical technologies

. . . BUT

• entanglement-enabled strategies are often hard to understand

• we are yet to uncover the full range of advantages that
entanglement can bring.

Therefore, we need to

1 develop general methods for analyzing entanglement

2 identify novel operational applications of entanglement

We need a versatile abstract model!
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Nonlocal games are central to various fields

Nonlocal
games

Cryptography
Theoretical
computer

science

Foundations
of physics

One-round two-prover interactive
proof systems (Ben-Or et al., STOC’88)

PCP theorem
(Arora et al.

J. ACM 45(3), 1998)

Einstein-Podolsky-Rosen
paradox (Phys. Rev. 47(10), 1935)

Bell’s theorem
(Physics 1(3), 1964)

Experimental demonstration
(Hensen et al. Nature 526, 2015)

Protocols for untrusted devices
(Pironio et al. Nature 464(7291), 2010;

Vazirani et al. Nature 496, 2013)
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What is a nonlocal game?

V

(s, t) ∼ π

BA

t ∈ Ts ∈ S

a ∈ A b ∈ B

|ψ〉

• verification function V : (a,b|s, t) 7→ {0

lose

, 1

win

}

• Players want to maximize their chances of winning

• Highest classical success probability: ω(G)

• Highest entangled success probability: ω∗(G)
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Nonlocal games reveal if entanglement can be useful

V

(s, t) ∼ π

B

t ∈ T

b ∈ BA a ∈ A

s ∈ S

|ψ〉
Operational/cryptographic task Nonlocal game

⇐⇒
Can entanglement be helpful? Is ω∗ > ω?

How helpful? How large is ω∗ −ω?

Complication: ω∗ cannot be computed1 or even approximated2!
How so? A: Need to optimize over states of arbitrarily high dimension.

1Slofstra, Forum of Mathematics, Pi, vol. 7, 2019.
2MIP*=RE. Ji, Natarjan, Vidick, Wright, Yuen. arXiv:2001.04383

9



Summary so far

• Nonlocal games provide a general framework for studying
entanglement

• Problem: Entanglement-assisted strategies for arbitrary
nonlocal games are hard to analyze

Line of attack: Focus on a well-behaved class of games
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Quantum Isomorphisms



Graph isomorphism

∼=

A map f : V(G)→ V(H) is an isomorphism from G to H if

• f is a bijection and

• g ∼ g ′ if and only if f(g) ∼ f(g ′).

If such a map exists, we say that G and H are isomorphic and
write G ∼= H.

Matrix formulation: PAGP
† = AH for some permutation matrix P
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(G,H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G ∼= H.

R

BA

g ′g

h h ′

• To win players must reply h,h ′

such that rel(h,h ′) = rel(g,g ′)

• No communication during game

Fact. G ∼= H ⇔ Classical players can win the game with certainty

Def. (Quantum isomorphism)
We say that G ∼=qc H if quantum1 players can win the game with
certainty.

1We work in the commuting rather than the tensor-product model.
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Quantum commuting strategies
G ∼=qc H := Quantum players can win the (G,H)-isomorphism game

R

BA

g ′g

h h ′

ψ

• Alice and Bob share a quantum state ψ
ψ is a unit vector in a Hilbert space H

• Upon receiving g, Alice performs a local
measurement Eg to get h ∈ V(H)
Eg = {Egh ∈ B(H) : h ∈ V(H)} where

Egh � 0,
∑

h Egh = I.

• Bob measures with Fg′

• Egh and Fg′h′ commute

The probability that players respond with h,h ′ on questions g,g ′ is

p(h,h ′|g,g ′) = 〈ψ,
(
EghFg ′h ′

)
ψ〉
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Example: G 6∼= H but G ∼=qc H
x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Construction based on reduction from linear system games.

15



Example: G 6∼= H but G ∼=qc H
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Undecidability

Cor. Given two graphs G and H it is undecidable to test whether
they are quantum isomorphic.
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Quantum isomorphism and quantum groups
(1st characterization of ∼=qc)

Def. A matrix P = (pij) whose entries are elements of a
C∗-algebra is a quantum permutation matrix (QPM), if
• pij is a projection, i.e., p2ij = pij = p

∗
ij for all i, j

•
∑

k pik = 1 =
∑

` p`j for all i, j

Remark. A QPM with entries from C is a permutation matrix.

Thm. (Lupini, M., Roberson)

G ∼=qc H ⇔ PAGP† = AH for some quantum

permutation matrix P
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Quantum automorphism group, Qut(X), of a graph

Def. (Banica 2005)
C(Qut(X)) is the universal C∗-algebra generated by elements pij,
i, j ∈ V(X), satisfying the following:

1 P = (pij) is a quantum permutation matrix.

2 AXP = PAX.

The quantum automorphism group, Qut(X), of a graph X is
given by C(Qut(X)) together with the comultiplication map

∆(pij) =
∑

k pik ⊗ pkj

The matrix P is called the fundamental representation of Qut(X).
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Orbits of Qut(X)
(2nd characterization of ∼=qc)

P = (pij) - fundamental representation of Qut(X).

Def. Vertices i, j ∈ V(X) are in the same orbit of Qut(X) if
pij 6= 0.

Lemma. The above is an equivalence relation.

Thm. Let G and H be connected graphs.

G ∼=qc H ⇔ There exist g ∈ V(G), h ∈ V(H)
in the same orbit of Qut(G ∪H).
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Quantum isomorphism and homomorphism counting
(3rd characterization of ∼=qc)

Thm. (M., Roberson)

G ∼=qc H ⇔ graphs G and H have the same number of

homomorphisms from all planar graphs.

Main component of our proof: Provide a combinatorial
description of the intertwiners of Qut(G).

An (`,k)-intertwiner T of Qut(G) is a V(G)` × V(G)k C-valued
matrix s.t.

P⊗`T = TP⊗k

Chassaniol 2019: Intertwiners of Qut(G) = 〈U,M,AG〉◦,⊗,∗,lin
U =

∑
i∈V(G)

ei, M(ei ⊗ ej) = δijei ∀i, j ∈ V(G).
21



Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

An (`,k)-bi-labeled graph is a triple ~F = (F, ~a,~b) where

• F is a graph

• ~a = (a1, . . . ,a`) and ~b = (b1, . . . ,bk) are tuples of vertices
of F.

Example. ~F =
(
K4, (2, 1), (2, 2)

)

2

1

43
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How to draw bi-labeled graphs

2

1

43
~F =

(
K4, (2, 1), (2, 2)

)

~M =
(
K1, (1), (1, 1)

)
~U =

(
K1, (1),∅

)
~A =

(
K2, (1), (2)

)
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Homomorphism matrices

Let G be a graph and ~F = (F, (a), (b)) an (1, 1)-bi-labeled graph.

Def. (G-homomorphism matrix of ~F)

For u, v ∈ V(G), the uv-entry of the homomorphism matrix T
~F

is
|{homs ϕ : F→ G | ϕ(a) = u, ϕ(b) = v}| .

Example. ~A = (K2, (1), (2)) 1 2

(
T
~A
)
u,v

=

{
1 if u ∼ v

0 otherwise

So T
~A = AG. Similarly, T

~U = U, T
~M =M.
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Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs ~F1,~F2,

T
~F1T

~F2 = T
~F1◦~F2 ,

where ~F1 ◦~F2 is defined as

1

2

3

4

5

~F1

a

b

c

d

~F2

e

1

2

3

{4, a, c}

{5, b, d}
e

~F1 ◦ ~F2

◦ =

25



Planar bi-labeled graphs

Recall: Intertwiners of Qut(G) = 〈U,M,AG〉◦,⊗,∗,lin
So we want to know what bi-labeled graphs are in 〈~U, ~M, ~A〉◦,⊗,∗.

Def.

a1

a2

a3

b1

b2

b3

F

F ◦

a1

a2

a3

b1

b2

b3

F

α1

α2

α3

β1

β2

β3

P = {~F : F◦ has planar embedding w/ enveloping cycle bounding outer face}

Thm. (informal) Intertwiners of Qut(G) are given by the span of
homomorphism matrices of planar bi-labeled graphs.
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Summary

• Entanglement can be harnessed for operational and cryptographic tasks.

• Nonlocal games provide a mathematical framework for studying
entanglement

ψ

• G ∼=qc H := Quantum players can win the isomorphism game

Quantum isomorphisms and quantum groups:
• Thm. G ∼=qc H ⇔ PAGP† = AH for some quantum

permutation matrix P

• Thm. G ∼=qc H ⇔ There exist g ∈ V(G), h ∈ V(H)
in the same orbit of Qut(G ∪H)

• Thm. G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar F

Thank you! 27


