Quantum groups and nonlocal games

Laura Mančinska QMATH, University of Copenhagen

Plan for today

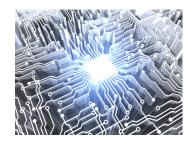
- Motivation: quantum computing
 - What is quantum computing all about?
 - Entanglement and nonlocal games
- 2 Graph isomorphism games

Take-away: quantum groups arise in quantum computing via nonlocal games.

Quantum computing and information

Goal: Exploit quantum mechanical effects to process information.

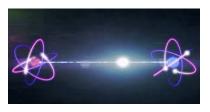
- better security guarantees
- faster algorithms
- higher communication rates, etc.



Early examples

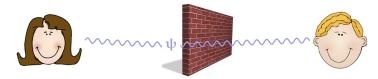
- Unconditionally secure communication channel (Bennett-Brassard'84, Ekert'91)
- Polynomial-time integer factorization (Shor'94)

What is quantum entanglement?



- Property of composite systems.
- Effects experienced by one of the parts affect the state of the other.

 Can be leveraged by distant agents to correlate their behaviors beyond classical limits.



Quantum entanglement leads to

- improvement for communication
 - replacing quantum communication with classical (teleportation)¹
 - doubling the classical capacity of quantum channels²
 - increasing zero-error capacity of classical channels³
- secure protocols which can be run on untrusted devices⁴
 - private randomness generation⁵
 - certification of quantum devices⁶
- insights to black hole dynamics⁷

⁷Hayden, Preskill, *J. High Energ. Phys.*, 2007(09):120, 2007.

¹Bennett, Brassard, Crépeau et al. *Phys. Rev. Lett.* **70**(13), 1993.

²Bennett, Wiesner, Phys. Rev. Lett. **69**, 1992.

³Leung, Mančinska, Matthews, Ozols, Roy, Comm. Math. Phys. **311**(1), 2012.

⁴Mayers, Yao, FOCS'98, 503-509.

⁵Pironio, Acín, Massar et al. *Nature* **464**(7291), 2010.

⁶Magniez, Mayers, Mosca, Ollivier, ICALP'06, 72-83.

Entanglement allows us to outperform classical technologies

...BUT

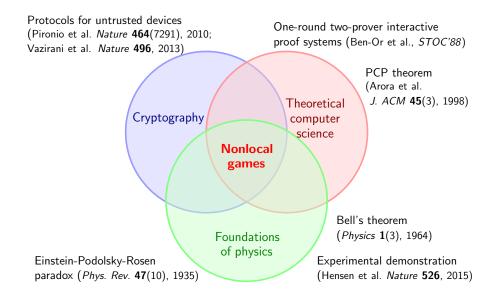
- entanglement-enabled strategies are often hard to understand
- we are yet to uncover the full range of advantages that entanglement can bring.

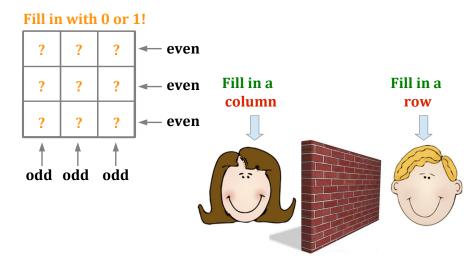
Therefore, we need to

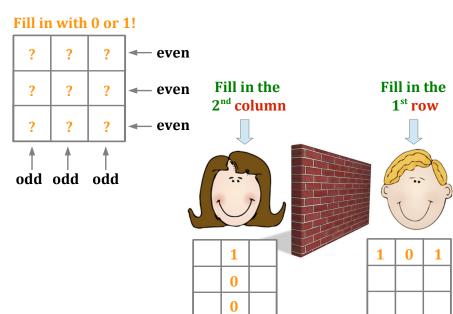
- 1 develop general methods for analyzing entanglement
- 2 identify novel operational applications of entanglement

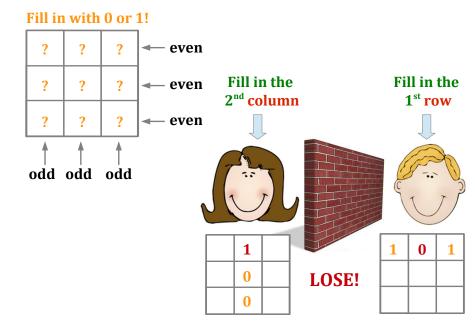
We need a versatile abstract model!

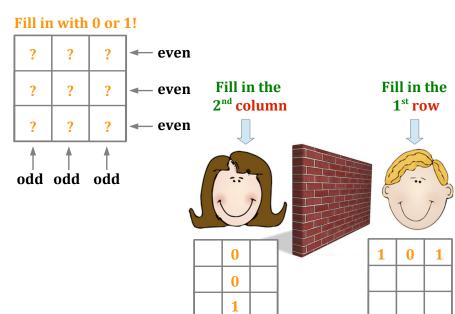
Nonlocal games are central to various fields

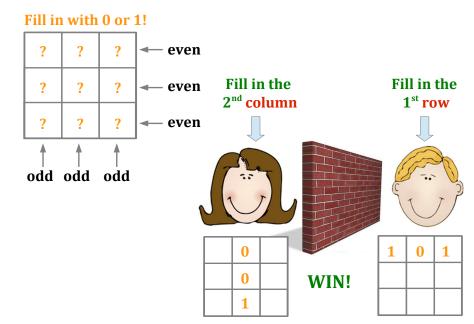




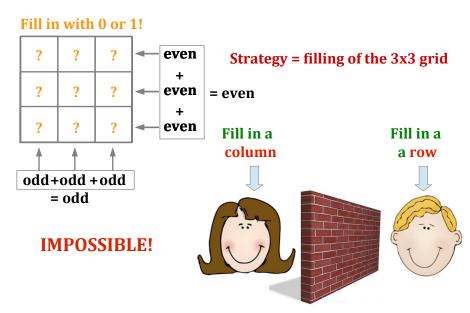


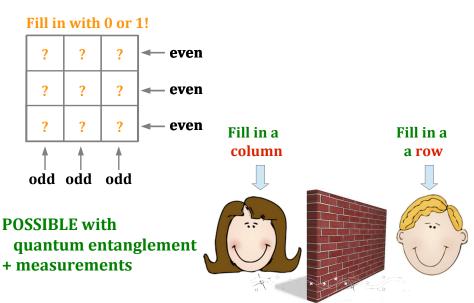




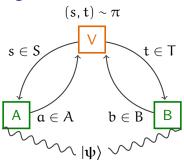


Fill in with 0 or 1! even Strategy = filling of the 3x3 grid even even Fill in a Fill in a column a row odd odd odd



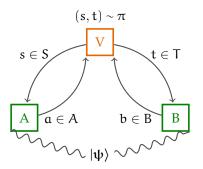


What is a nonlocal game?



- verification function $V : (a, b|s, t) \mapsto \{0, 1\}$
- Players want to maximize their chances of winning
 - Highest classical success probability: $\omega(G)$
 - Highest entangled success probability: $\omega^*(G)$

Nonlocal games reveal if entanglement can be useful



Operational/cryptographic task

Can entanglement be helpful? How helpful?

Nonlocal game

Is $\omega^* > \omega$? How large is $\omega^* - \omega$?

Complication: ω^* cannot be computed¹ or even approximated²! **How so?** A: Need to optimize over states of arbitrarily high dimension.

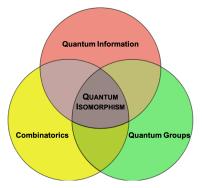
¹Slofstra, Forum of Mathematics, Pi, vol. 7, 2019.

²MIP*=RE. Ji, Natarjan, Vidick, Wright, Yuen. arXiv:2001.04383

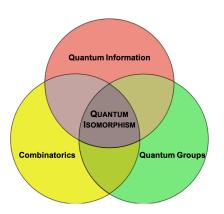
Summary so far

- Nonlocal games provide a general framework for studying entanglement
- Problem: Entanglement-assisted strategies for arbitrary nonlocal games are hard to analyze

Line of attack: Focus on a well-behaved class of games



Quantum Isomorphisms



Graph isomorphism

A map $f:V(G) \to V(H)$ is an isomorphism from G to H if

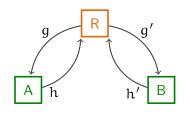
- f is a bijection and
- $g \sim g'$ if and only if $f(g) \sim f(g')$.

If such a map exists, we say that G and H are isomorphic and write $G \cong H$.

Matrix formulation: $PA_GP^{\dagger} = A_H$ for some permutation matrix P

(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.



- To win players must reply h, h' such that rel(h, h') = rel(g, g')
- No communication during game

Fact. $G \cong H \Leftrightarrow$ **Classical** players can win the game with certainty

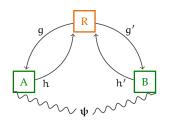
Def. (Quantum isomorphism)

We say that $G \cong_{qc} H$ if quantum¹ players can win the game with certainty.

¹We work in the commuting rather than the tensor-product model.

Quantum commuting strategies

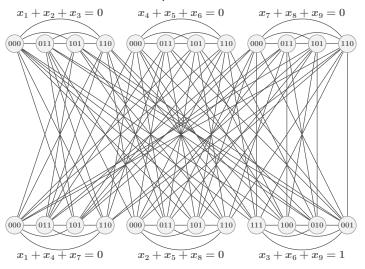
 $G\cong_{qc}H := \mbox{\bf Quantum}$ players can win the $(G,H)\mbox{-isomorphism}$ game



- Alice and Bob share a quantum state ψ ψ is a unit vector in a Hilbert space $\mathcal H$
- $$\begin{split} \bullet & \text{ Upon receiving g, Alice performs a local } \\ & \text{ measurement } \mathcal{E}_g \text{ to get } h \in V(H) \\ & \mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\} \text{ where } \\ & E_{gh} \succeq 0, \quad \sum_h E_{gh} = I. \end{split}$$
- Bob measures with $\mathcal{F}_{\mathbf{q}'}$
- E_{gh} and $F_{g'h'}$ commute

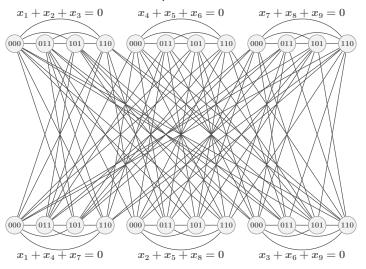
The probability that players respond with h, h' on questions g, g' is $p(h,h'|g,g') = \langle \psi, \left(\mathsf{E}_{gh} \mathsf{F}_{g'h'} \right) \psi \rangle$

Example: $G \not\cong H$ but $G \cong_{qc} H$



Construction based on reduction from linear system games.

Example: $G \not\cong H$ but $G \cong_{qc} H$



Construction based on reduction from linear system games.

Undecidability

Cor. Given two graphs G and H it is undecidable to test whether they are quantum isomorphic.

Quantum isomorphism and quantum groups (1st characterization of \cong_{qc})

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C^* -algebra is a **quantum permutation matrix** (QPM), if

- p_{ij} is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j
- $\sum_{k} p_{ik} = 1 = \sum_{\ell} p_{\ell j}$ for all i, j

Remark. A QPM with entries from \mathbb{C} is a permutation matrix.

Thm. (Lupini, M., Roberson)
$$G\cong_{qc}H \quad \Leftrightarrow \quad \mathcal{P}A_{G}\mathcal{P}^{\dagger}=A_{H} \text{ for some quantum}$$
 permutation matrix \mathcal{P}

Quantum automorphism group, Qut(X), of a graph

Def. (Banica 2005)

C(Qut(X)) is the universal C^* -algebra generated by elements $\mathfrak{p}_{\mathfrak{i}\mathfrak{j}}$, $\mathfrak{i},\mathfrak{j}\in V(X)$, satisfying the following:

- ① $\mathcal{P} = (p_{ij})$ is a quantum permutation matrix.
- $2 A_X \mathcal{P} = \mathcal{P} A_X.$

The quantum automorphism group, Qut(X), of a graph X is given by C(Qut(X)) together with the comultiplication map

$$\Delta(\mathfrak{p}_{ij}) = \sum_{k} \mathfrak{p}_{ik} \otimes \mathfrak{p}_{kj}$$

The matrix \mathcal{P} is called the **fundamental representation** of Qut(X).

Orbits of Qut(X)(2nd characterization of \cong_{qc})

 $\mathbb{P} = (\mathfrak{p}_{\mathfrak{i}\mathfrak{j}})$ - fundamental representation of Qut(X).

Def. Vertices $i, j \in V(X)$ are in the same **orbit** of Qut(X) if $p_{ij} \neq 0$.

Lemma. The above is an equivalence relation.

Thm. Let G and H be connected graphs.

$$G \cong_{qc} H \quad \Leftrightarrow \quad \text{There exist } g \in V(G) \text{, } h \in V(H)$$
 in the same orbit of $\text{Qut}(G \cup H)$.

Quantum isomorphism and homomorphism counting (3rd characterization of \cong_{qc})

Thm. (M., Roberson)

$$G \cong_{qc} H \Leftrightarrow graphs G and H have the same number of homomorphisms from all planar graphs.$$

Main component of our proof: Provide a *combinatorial description* of the **intertwiners** of Qut(G).

An $(\ell,k)\text{-intertwiner}\ T$ of Qut(G) is a $V(G)^\ell\times V(G)^k$ $\mathbb{C}\text{-valued}$ matrix s.t.

$$\mathcal{P}^{\otimes \ell} \mathsf{T} = \mathsf{T} \mathcal{P}^{\otimes k}$$

Chassaniol 2019: Intertwiners of $Qut(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

$$U = \sum_{\mathbf{i} \in V(G)} e_{\mathbf{i}}, \quad M(e_{\mathbf{i}} \otimes e_{\mathbf{j}}) = \delta_{\mathbf{i}\mathbf{j}} e_{\mathbf{i}} \ \forall \mathbf{i}, \mathbf{j} \in V(G).$$

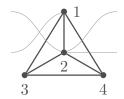
Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

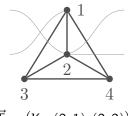
An $(\ell,k)\text{-bi-labeled graph}$ is a triple $\vec{F}=(F,\vec{\alpha},\vec{b})$ where

- F is a graph
- $\vec{a}=(a_1,\ldots,a_\ell)$ and $\vec{b}=(b_1,\ldots,b_k)$ are tuples of vertices of F.

Example.
$$\vec{F} = (K_4, (2, 1), (2, 2))$$



How to draw bi-labeled graphs



$$\vec{F}=\left(K_4,(2,1),(2,2)\right)$$

$$\vec{U} = (K_1, (1), \varnothing) \qquad \vec{M} = (K_1, (1), (1, 1)) \qquad \vec{A} = (K_2, (1), (2))$$

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an (1, 1)-bi-labeled graph.

Def. (G-homomorphism matrix of \vec{F})

For $u, v \in V(G)$, the uv-entry of the homomorphism matrix $T^{\vec{F}}$ is $\{\text{homs } \varphi : F \to G \mid \varphi(a) = u, \ \varphi(b) = v\}\}$.

So $T^{\vec{A}} = A_G$. Similarly, $T^{\vec{U}} = U$, $T^{\vec{M}} = M$.

Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs \vec{F}_1 , \vec{F}_2 ,

$$T^{\vec{F}_1}T^{\vec{F}_2} = T^{\vec{F}_1 \circ \vec{F}_2}$$

where $\vec{F}_1 \circ \vec{F}_2$ is defined as

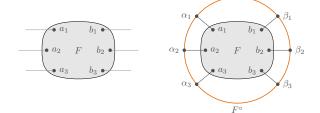


Planar bi-labeled graphs

Recall: Intertwiners of Qut(G) = $\langle U, M, A_G \rangle_{\circ, \otimes, *, lin}$

So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}.$

Def.

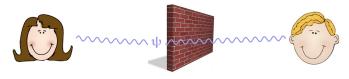


 $\mathcal{P} = \{\vec{F}: F^{\circ} \text{ has planar embedding } w/ \text{ enveloping cycle bounding outer face}\}$

Thm. (informal) Intertwiners of Qut(G) are given by the span of homomorphism matrices of planar bi-labeled graphs.

Summary

- Entanglement can be harnessed for operational and cryptographic tasks.
- Nonlocal games provide a mathematical framework for studying entanglement



• $G \cong_{qc} H := \mathbf{Quantum}$ players can win the isomorphism game

Quantum isomorphisms and quantum groups:

- Thm. $G\cong_{qc} H \Leftrightarrow \mathcal{P}A_G\mathcal{P}^\dagger = A_H$ for some quantum permutation matrix \mathcal{P}
- $\begin{array}{ll} \bullet \text{ Thm. } G \cong_{\text{qc}} H & \Leftrightarrow & \text{There exist } g \in V(G) \text{, } h \in V(H) \\ & \text{in the same orbit of } Qut(G \cup H) \end{array}$
- Thm. $G \cong_{qc} H \Leftrightarrow hom(F, G) = hom(F, H)$ for all planar F